Cytotoxic effect of punisic acid of pomegranate seed oil on the cellular line of blood cancer (K652)

Roya Vazirijavid1*, Hossein Maghsodi2, Reza Hajihosseini1

1. Department of Biochemistry, Payame Noor University, Tehran, Iran.
2. Department of Biotechnology, Payame Noor University, Shar Rey, Iran.

Abstract

Background: Chronic myeloid leukemia (CML) is a malignant clonal disorder of hematopoietic stem cells that causes the increase of myeloid, erythroid cells, and blood platelets and hyperplasia in the bone marrow. This study is performed the effect of cytotoxicity of punisic acid of pomegranate seed oil on the cellular line of blood cancer (K652), as a model of Chronic Myeloid Leukemia.

Materials and Methods: In this experiential laboratory study. Punicic acid of pomegranate seed oil was purchased from Clarodan Kerman Co., representative of LCG Co. in Iran. K562 cells were cultured and were administered with densities of 8 to 100 micrograms per milliliters (in 24h, 48h, and 72h). Cellular toxicity of punicic acid against K562 leukemic cells was estimated using the MTT, LDH and SDH method. Absorption was measured using Elisa machine. Then the data were analyzed with the computer software SPSS version 15.0 (SPSS Inc., Chicago, USA), t.test and ANOVA.

Findings: Punicic acid of pomegranate seed oil shows the most cellular toxicity effect at lc50=50 micrograms per milliliters and 72 hours after treatment. In other words, punicic acid of pomegranate seed oil expresses the effects of cellular toxicity on k562 cells, depending on the dosage.

Conclusion: Considering the toxicity of punicic acid of pomegranate seed oil, punicic acid can be considered a potential candidate for further CML studies, and other cancer cells.

Keywords: Cytotoxic, CML, K562, Punicic Acid, Leukemia
بررسی اثر سمیت سلولی پاتیسیک اسید رونگ هسته اتان بر رده سلولی سرطان خون (K562)

رویا ویژی چاودی۱، حسین مقصودی۲، رضا حسینی۱

۱- گروه پیشسی Dankshkagha Yaram Tadbir, تهران شرق، ایران
۲- گروه بیوتکنولوژی، Dankshkagha Yaram Tadbir, تهران شرق، ایران

چکیده:
سابقه و هدف: سمی در خون باوری در بیماری‌های خونی مانند CML وجود دارد. این بیماری به نوبه خود در واقع از نظر اندامی در سایر بیماری‌های خونی یک اکستریم است و دیگر بیماری‌های خونی مانند عفونت درون‌سیستمی باعث الگویی در سایر بیماری‌های خونی مانند عفونت درون‌سیستمی می‌گردد. پاتیسیک اسید رونگ از مکانیسم‌های سلولی سرطان به ویژه در سلول‌های سرطانی آورده شده است.

مطالعه و روش‌بررسی: دراین مطالعه در بیمارستان خمینی تهران، زندگی‌محیطی پاتیسیک اسید رونگ سلولی سرطانی K562 را جهت انفعال سلولی سرطانی K562 Rازگان کلیدی: سلولی سرطانی K562 ، پاتیسیک اسید، لوسومی KML ، پاتیسیک اسید، لوسومی KML
پژوهش در پزشکی

زمینه اثر ضد سرطانی پایین‌سپیک آسی سروگی هنگام انجم تکرریه است، هدف از مطالعه حاضر تاثیر سلولی پایین‌سپیک اسید رونگین هنگام برد سلولی K562 به عنوان مدل از CML بر روی خون ساز درمان لوسیسی به طور مقداری و در برای اولین بار مورد آزمایش قرار گرفت.

گردد:

مواد و روش‌ها:

این مطالعه بر صورت تجزیه و با شوه از امپایشگاهی انجام گرفته است. پایین‌سپیک آسی سروگی هنگام اثر آن در کلاژن کارولان کمک کننده شرکت آمریکا است، با تغییرات 85% خودپرورش شده است و از تزامان ارائه در دو مدل و دیگر دو مدل که پژوهشی آیدز خودپرورش شده است و مانند کریستالگرافی و دارک ارائه شده در مدل دو مدل. پژوهشی آیدز خودپرورش شده است.

در به منظور اندازه‌گیری اثر ضد سرطانی در ۱۶۲ سلولی K562 در این۱۳۹۴ از استان پاسیو، این همه مدل در مبحث خوانی اول استفاده می‌شود. این روش در سلولی از محبی، پیوپتیک سیگمایک (که می‌تواند در سم تازمانی) و رنگ ترکیباتی (Fetal Bovine Serum) و پیوپتیک سیگمایک از ۴۰۰ میکروگرم به میلی لیتر (2 و پن سیلن ۱۰۰ واحد به میلی لیتر، سیلوزن استفاده شد. سلولی در هم‌بندی کنت سلول داکی اکسید کریستالگرافی نشان داد که سلولی به طبیعت می‌شود:

نرخ موتوری ۹۵ درصد سوم گرفت.

نتایج:

MTC سبیم برای میلی میکروسپور (Methyl-4X-thiazeolium) اثر ضد سرطانی K562 از آزمون Thiatozol نشان داد. نکته تئوری که با اثبات فردی از مثابایی و پایین‌سپیک آسی سروگی هنگام مواردی که پیچیده است که پیچیده است. با سلولی 7۱٪ که پیچیده است. هنگام اثر آن در کلاژن کارولان کمک کننده شرکت آمریکا است، با تغییرات 85% خودپرورش شده است و از تزامان ارائه در دو مدل و دیگر دو مدل که پژوهشی آیدز خودپرورش شده است.

نتایج:

MTC سبیم برای میلی میکروسپور (Methyl-4X-thiazeolium) اثر ضد سرطانی K562 از آزمون Thiatozol نشان داد. نکته تئوری که با اثبات فردی از مثابایی و پایین‌سپیک آسی سروگی هنگام مواردی که پیچیده است که پیچیده است. با سلولی 7۱٪ که پیچیده است. هنگام اثر آن در کلاژن کارولان کمک کننده شرکت آمریکا است، با تغییرات 85% خودپرورش شده است و از تزامان ارائه در دو مدل و دیگر دو مدل که پژوهشی آیدز خودپرورش شده است.

نتایج:

MTC سبیم برای میلی میکروسپور (Methyl-4X-thiazeolium) اثر ضد سرطانی K562 از آزمون Thiatozol نشان داد. نکته تئوری که با اثبات فردی از مثابایی و پایین‌سپیک آسی سروگی هنگام مواردی که پیچیده است که پیچیده است. با سلولی 7۱٪ که پیچیده است. هنگام اثر آن در کلاژن کارولان کمک کننده شرکت آمریکا است، با تغییرات 85% خودپرورش شده است و از تزامان ارائه در دو مدل و دیگر دو مدل که پژوهشی آیدز خودپرورش شده است.
LDH assay

به منظور بررسی سنگین سمت باینراتیک اسید رونگ هسته آن بر سرایل K535‌‌هایی عدل ۱۵ تا ۶۰ ثانیه از آب در شیشه یک ویل قرار داده شد. بعداً ۲۴ ساعت به لیزه‌ایهای بلوط‌بی‌پروتئین جادوگری اضافه شد و به سیالیت باینراتیک در لایه سطحی پس از ۲۴ ساعت افزایش مشخص شد. به همین شیوه از سنگین سمت سلولهای اساسی روش LDH Activity = B x Sample dilution factor / Reaction time

SDH assay

به منظور بررسی سنگین سمت باینراتیک اسید رونگ هسته آن بر سرایل K535‌‌هایی عدل ۱۵ تا ۶۰ ثانیه از آب در شیشه یک ویل قرار داده شد. بعداً ۲۴ ساعت به لیزه‌ایهای بلوط‌بی‌پروتئین جادوگری اضافه شد و به سیالیت باینراتیک در لایه سطحی پس از ۲۴ ساعت افزایش مشخص شد. به همین شیوه از سنگین سمت سلولهای اساسی روش SDH activity = Sa/Reaction time x Sv
توضیحات:

نتایج مقدمه

نتایج به طور مطرح یافته‌ای است که نسبت به سلسول‌های دیگر، سلسول K562 در 50 و 72 ساعت، تعداد افرادی که در تعداد نشان‌دهنده‌ای مورد نظر قرار گرفتند، بیشتر بوده و در زمان 50 ساعت، تعداد افرادی که در تعداد نشان‌دهنده‌ای مورد نظر قرار گرفتند، بیشتر بوده.

نتایج مقدمه

نتایج به طور مطرح یافته‌ای است که نسبت به سلسول‌های دیگر، سلسول K562 در 50 و 72 ساعت، تعداد افرادی که در تعداد نشان‌دهنده‌ای مورد نظر قرار گرفتند، بیشتر بوده و در زمان 50 ساعت، تعداد افرادی که در تعداد نشان‌دهنده‌ای مورد نظر قرار گرفتند، بیشتر بوده.

نتایج مقدمه

نتایج به طور مطرح یافته‌ای است که نسبت به سلسول‌های دیگر، سلسول K562 در 50 و 72 ساعت، تعداد افرادی که در تعداد نشان‌دهنده‌ای مورد نظر قرار گرفتند، بیشتر بوده و در زمان 50 ساعت، تعداد افرادی که در تعداد نشان‌دهنده‌ای مورد نظر قرار گرفتند، بیشتر بوده.

نتایج مقدمه

نتایج به طور مطرح یافته‌ای است که نسبت به سلسول‌های دیگر، سلسول K562 در 50 و 72 ساعت، تعداد افرادی که در تعداد نشان‌دهنده‌ای مورد نظر قرار گرفتند، بیشتر بوده و در زمان 50 ساعت، تعداد افرادی که در تعداد نشان‌دهنده‌ای مورد نظر قرار گرفتند، بیشتر بوده.
نمودار ۱ نمودار LC50 همانطور که در نمودار فوق مشاهده می‌شود چقدر غلظت پایه‌ای اسید البروئی سول وی بهبود شده میزان زندگی مانی سول یا کم شده است و در غلظت ۵۰ سیکل‌گرم بر میلی لیتر ۵۰ درصد سولها از بین رفتند. برای کنترل منفی از داروی دوکسورپریپسین و برای کنترل منفی سول‌های همگن هر دو رفتار است.

cell 1

cell 2

cell 3

جدول ۱. درصد بقا سلول های K562 بر اساس تست تربیان بلو و رقت های سریالی تهیه شانسیک اسید روغن هره اثر

<table>
<thead>
<tr>
<th>غلظتها براساس مکروگرم</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد سلول زنده</td>
<td>100</td>
<td>90</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>درصد سلول زنده</td>
<td>0%</td>
<td>10%</td>
<td>30%</td>
<td>50%</td>
<td>70%</td>
<td>90%</td>
<td>100%</td>
</tr>
<tr>
<td>تعداد سلول مرده</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>درصد سلول مرده</td>
<td>0%</td>
<td>10%</td>
<td>30%</td>
<td>50%</td>
<td>70%</td>
<td>90%</td>
<td>100%</td>
</tr>
</tbody>
</table>

جدول ۲. درصد بقا سلول های K562 در گروه کنترل منفی (بدون اساس) کنترل منفی ۲ (اکتیو به عنوان حلال کن) و در حضور کنترل منفی (داروی دوکسورپریپسین) LC50

<table>
<thead>
<tr>
<th>نوع تست</th>
<th>کنترل منفی سولول تنها (بدون اساس)</th>
<th>کنترل منفی (مانیل به عنوان حلال)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تربیان بلو</td>
<td>۱۵/۳±/۱/۹</td>
<td>۶/۱/۹</td>
</tr>
<tr>
<td>MTT</td>
<td>۱۵/۴±/۳/۱</td>
<td>۶/۳/۱</td>
</tr>
<tr>
<td>SDH</td>
<td>۱۵/۴±/۳/۱</td>
<td>۶/۳/۱</td>
</tr>
<tr>
<td>LDH</td>
<td>۱۵/۴±/۳/۱</td>
<td>۶/۳/۱</td>
</tr>
</tbody>
</table>

پژوهش در پزشکی دوره ۴۱، شماره ۲، ۱۳۹۶، صفحات ۹۷ تا ۱۱۱
نمودار ۲/۳ اثرات پاتیسیک اسید روغن هسته اثر بر درصد بقای سلولی های K562. سلول‌ها با غلتخت‌های مختلف از پاتیسیک اسید تیمار و میزان بقای سلول‌ها با استفاده از شمارش سلولی و آزمون دفع رنگ تریپان به مورد ارزیابی قرار گرفت. نتایج به صورت نمودار فوق توضیح داده شده است.

نتایج مورفولوژیکی:
بررسی تغییرات ظاهری بر روی سلول‌های تیمار شده با پاتیسیک اسید، نشان دهنده تغییرات شناسی مشخصی در سلول‌های تیمار شده نسبت به کنترل بود. در شکل یک تکه شدن کروماتین و رنگ‌های خورده‌ای شکل کروی سلول‌ها در LC50 = ۵۰ میکروگرم بر میلی لیتر و میزان میانگین آن LC50 = ۳۳ میکروگرم بر میلی لیتر می‌باشد. به طور کلی بر اساس تست های انگام شده و مقایسه داده‌های بدست آمده از میزان سنگش قابلیت سلول‌های سرطانی K562 تحت تیمار با پاتیسیک اسید، نتایج معنی‌داری در (p<0/0 کشش می‌دارد شده)
نمودار 5 اثرات پاتیسیک اسید بر درصد بقا سلول های K562 سلول ها با غلظت های مختلف از پاتیسیک اسید با فاصله های زمانی 24، 48، 72 ساعت نمایش داده شده است.

نمودار 6 اثرات پاتیسیک اسید بر درصد بقا سلول های K562 سلول ها با غلظت های مختلف از پاتیسیک اسید با فاصله های زمانی 24، 48، 72 ساعت نمایش داده شده است.

به خاطر استفاده راحت و دوام کافی در رساندن به نتیجه استفاده می‌شود Methyl (28) روی رنگ سنگی احیای تکم میل تیازول تزر زولوم (Thiazol Tehrazzolium-MTT) بسیار سریع، حساس و قابل اندازه‌گیری به‌اشتهای چهار، سریع و ناپایدار کاهش و رنگ‌های پاتیسیک اسید و نتیجه می‌رسد که کاهش بیشتری دارد (29). اساس پاتیسیک اسید روی چندین MTT دهیدروتان میتودکریدی (است (23). یکی از فاکتورهای متور در تعادل سلول‌ها زنده است که در سلول‌های کاهش می‌دهد. (Viability) بررسی سمت سلولی در اثر کاهش گیری میکروبی، باید توجه نمود که اساس تغییرات مورفولوژیکی آن ها می‌باشد (31). در این مطالعه به بررسی اثر سمت سلولی ناشی از پاتیسیک اسید روغن هند اثر با غلظت های مختلف بر ره سلول سرطان خون میلیوئیوی، مزمن انسان (624k) پرداخته شد و اثر سیستوموسیتی وابسته به طوری که

بحث:
امروزه روش‌های مختلفی در درمان سرطان خون به کار گرفته می‌شود. این اثرات یکنفر، تحلیل رفتاری واکنش‌های دندان و کاهش سیتواسام ویگمانه‌شدن و به‌خصوص توقف نیتروزه را در مقایسه با کنترل نشان می‌دهند. این نتایج بین گر اثر سمت سلولی پاتیسیک اسید رده سلولی K562 می‌باشد.

پژوهش در پزشکی دوره 41، شماره 2، 1396، صفحات 97 تا 111
جدول ۳. مقایسه میانگین درصد نرمالیتی سلول های سرطانی kPS به استاندارد LDH و SDH MTT

<table>
<thead>
<tr>
<th>نوع تست</th>
<th>درصد نرمالیتی (MA)</th>
<th>LC50 (۵۰ میکروگرم بر میلی لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سنجش تریپان بل</td>
<td>۵۰ ± ۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>میکروتیستور</td>
<td>۵۰ ± ۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>SDH</td>
<td>۵۰ ± ۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>LDH</td>
<td>۵۰ ± ۲۰</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

شکل ۱ نتایی ایجاد شده در سلول های سرطانی با پایان یک سه چهار نشان دهنده ترکیب ترکیب MTT آبی و SDH است. در این مطالعه اثرات LDH و SDH بر روی سلول های سرطانی در سطح ۵٪AMA در نظر گرفته شد.
پژوهش در پزشکی
دوره 41، شماره 2، 1396، صفحات 97–109

لَرنَه: دری‌نامه‌های اثرات پزشکی اسید پونیک آور

۱۳. Lansky EP, Jiang W, Mo H, Bravo L, Froom P, Yu W, Harris NM, Neeman I, Campbell MJ. 2005b. possible synergistic prostate cancer suppression by...

63. Goodwin C, Holt S, Downes S, Marshall N. Microculture tetrazolium assays: a comparison between...
9(Z),11(E),13(Z)-Octadecatrienoic acid (Punicic acid)

Amount: >25 mg. Crystalline solid
Package: Plastic tube purged and closed under argon
Precautions: Should be stored at -25°C or below. Protect from light.
Cat no.: 10-1803-27
Lot No.: LS-088

Identity
The identity of the material is based on its mode of preparation and on the mass spectrum (attached) recorded on the methyl ester derivative.

Purity
>98%. The chemical purity was determined by GC-MS analysis of the methyl ester derivative using a capillary column of 5% phenylmethylsiloxane (12 m, 0.33 μm film thickness, carrier gas: helium). The temperature was raised from 120°C to 260°C at a rate of 10°C/min (GC-MS analysis attached). Analysis was also performed by GLC using a capillary column of 25 m, 0.33 μm film thickness, carrier gas: helium) at 200°C (attached).