استخراج مرفین از ادرار انسان به کمک روش‌های مایع–مايع و فاز جامد و مقایسه آنها

tوسط دانستونتراسکنترلیزی

دکتر سید عباس تقیوی، سید علی ناظری، دکتر امید سیروآرا، دکتر میری فکری، دکتر مهشید افشار

چکیده

ساقط و هدف: گروه مراکز هلندی که به کمک TLC روش سطحی‌سنجی از آزمایشگاه‌های استات که به سهولت به تجهیزات دسته‌بندی و ترکیب این آب آبی آزمایشگاه‌های استات که به سهولت به تجهیزات دسته‌بندی و ترکیب این آب آبی

دانستونتراسکنترلیزی (Slit-scanning densitometre) که در این مطالعه مهندسی گردیده از انجام ای این مطالعه مقایسه کنارآیی سیستم استخراج فاز جامد (SPE)، با یک سیستم استخراج فاز مايع (LLE) در استخراج مرفین از ادرار انسان، شناسایی توسط TLC و اندامگرهایی که با کمک دانستونتراسکنترلیزی می‌باشد

مواد و روش‌ها: برای این منظور د هدنوم ادرار از معادنی به متشکل از آریا کریستالی و سپس در هدنوم به چهار پخ تشکیل شده یا با پدیداری شده با پدیداری شده با پدیداری شده

شکل استخراج فاز جامد و در مورد استخراج فاز مايع (کارفرم، بایروپنال شیکر و استونفورمو) تکنیک شد و در مورد قسمتی از با روش عمیق هیدرویلیز انجام شد. حاصل استخراج هر چهار پخش از جداسازی و آشکارسازی توسط TLC، که به دستا که به دستا که به دستا

یافته‌ها: نتایج آماری نشان داد که در روش در هدنوم‌های هیدرویلیز شده و هیدرویلیز نشده، که در هدنوم‌های هیدرویلیز شده و هیدرویلیز نشده به نمودهای هیدرویلیز شده، بیشتر از نمودهای هیدرویلیز شده بود.

نتیجه‌گیری و توصیه‌ها: در مورد روش، نتایج حالت هیدرویلیز شده بیشتر بود. ممکن است با وجود سپر SPE و LLE بیشتر بود. ممکن است با وجود سپر SPE و LLE

ویژگی‌کلیدی: استخراج مرفین، روش مايع–مايع، ناز جامد.

مقدمه

پپپر سونیفرن (Papaver somniferum) تریاک از گیاه خشخاش با نام علمی

می‌باشد. این شرکت خشخاش حدود 20 نوع آتاکوتین به دست می‌آید که

موفقیت کارکرد تنها بر اساس این سپر و حداکثر 3/10 در تریاک پاک

می‌شود (1). در مقاله‌ها و منابع مختلف روش‌های تعددی برای

تشخیص مرفین ارائه شده است. از جمله روش کرومانتورگرافی

کاغذی (Paper Chromatography) که حساسیت حدود 200-2000 نانوگرم در ملیوسیترا می‌باشد. روش

از (Thin Layer Chromatography) کرومانتورگرافی‌یا ترکیب (Thin Layer Chromatography) کرومانتورگرافی‌یا ترکیب
استخراج مرغوبی از ادارات

مواد و روش‌ها

مواد شیمیایی:

حریان‌ها و مواد شیمیایی مورد نیاز شامل متنال، 2-پروپیولن، آلومینیوم کلرید، آمین‌رسان، تری‌بیورات‌های نیترات، تری‌بیورات‌های نیترات، فلورید، لیزر، دی‌ال‌ئی‌ام، اسید گلوکز و دی‌ال‌ئی‌ام.

روش‌ها:

1- استخراج مرغوبی از ادارات:

(1) از مجدد لیزر، دی‌ال‌ئی‌ام، iodine، CHCl₃ و آمین‌رسان استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، دی‌ال‌ئی‌ام، iodine، 400 °C و دی‌ال‌ئی‌ام، iodine، نیترات استخراج مرغوبی از ادارات مورد نیاز خامه، D
در این پژوهش انتخاب مربوط به اینکه در اثر اخیرین روش‌هایی، مانند انتخاب مواد تشکیل‌دهنده، تغییرات در میزان مواد بیولوژیکی، نتایج مثبت به پیش‌نمایش می‌گیرد. همچنین، این پژوهش افزایشی در میزان مواد بیولوژیکی، نتایج مثبت به پیش‌نمایش می‌گیرد. همچنین، این پژوهش افزایشی در میزان مواد بیولوژیکی، نتایج مثبت به پیش‌نمایش می‌گیرد. همچنین، این پژوهش افزایشی در میزان مواد بیولوژیکی، نتایج مثبت به پیش‌نمایش می‌گیرد. همچنین، این پژوهش افزایشی در میزان مواد بیولوژیکی، نتایج مثبت به پیش‌نا

جدول ۱: میزان زیر مつなگ اریگون به استانداردهای و ترتیب دهنده (۱۰۰٪) و خارج از (۱۰۰٪) TLC-Scanner

<table>
<thead>
<tr>
<th>LLE</th>
<th>SPE</th>
<th>LLE</th>
<th>SPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۰</td>
<td>۸۰</td>
<td>۱۵۰</td>
<td>۸۰</td>
</tr>
<tr>
<td>۰۲۰۲</td>
<td>۸۰</td>
<td>۰۲۰۲</td>
<td>۸۰</td>
</tr>
<tr>
<td>۱۰۰۱</td>
<td>۲۰۰۰</td>
<td>۱۰۰۱</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۶۰۰۰</td>
<td>۲۰۰۰</td>
<td>۶۰۰۰</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۸۰۰۰</td>
<td>۲۰۰۰</td>
<td>۸۰۰۰</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۱۰۰۰۰</td>
<td>۲۰۰۰</td>
<td>۱۰۰۰۰</td>
<td>۲۰۰۰</td>
</tr>
</tbody>
</table>

نمودار ۲: همبستگی SPE و LLE

![نمودار ۲: همبستگی SPE و LLE](image-url)
بحث

حساسیت قابل قبول برای تشخیص مرفین در ادرار مواد توصیه

۳۰۰ ng/ml (NIDA) می‌باشد. از این رو حساسیت روش‌های استفاده شده در این تحقیق

۳۰۰ انتخاب شد. آزمایشات در فلزات مختلف انجام شد.

و نتایج داد که فلزات ۳۰۰ در روش‌های مختلف که در این

تحقیق مورد استفاده قرار گرفتند قابل قبول شناختی و تکرار پذیر است.

LLE و SPE انحراف از استاندارد برابر روش ۲/۰۰۸ و ۴/۰۷ با ۰/۲ به ترتیب است.

عدد ۲۰۰۸ می‌باشد که نشان می‌دهد دقیق آزمایشات در این فلزات

قابل قبول است.

همانطور که اشاره شد ضریب همبستگی برای فلزات مختلف و

سطح زیر مصرف مواد برای روش SPE عدد ۱۸/۰۰ و برای

روش LLE عدد ۱/۰/۰۰ بوده است. بدین ترتیب انتخاب مواد

یک فلزات مرفین و سطح زیر مصرف در نمونه‌های استاندارد در هر

دو روش وجود دارد. بدین ترتیب است با این اقدام، سطح زیر

منچی هم افزایش خواهد یافت. در هر دو روش فلزات تحت ۹/۵

بوده و در مورد مرفین در حالت هیدروزیم شده پیشتر از حالت هیدروزیم

نشده می‌باشد. این نتیجه‌ای دوی از اندازه نسبت زیر مصرف از ادرار

به در صورت آزاد و کنترلگر شده با گلکورونید به نسیمی تغییر می‌کند.

۱۰ و ۲۵ درصد دفع می‌شود. (1) به عمل هیدروزیمی مزدوج

شده با گلکورونید به صورت آزاد درآمده و دمای آزاد اضافه

می‌شود. بنابراین این در حالت هیدروزیم شده و هیدروزیم نشده

اختلاف قابل توجهی در غلظت مواد ادرار مشاهده خواهد شد.

باتوجه به این واقعه در حال حاضر هیدروزیم شده نتایج قابل اطمینان نیست

مشاهده می‌شود. در مقایسه با بست حالت هیدروزیم نشده در روش

LLE و SPE مشاهده می‌شود که غلظت بدست آمده در مورد روش

LLE و SPE اندکی پیش از روش می‌باشد. این امر با این علت است

که با این حال روش SPE موفقیت پیش از روش LLE می‌باشد.

REFERENCES

