استخراج مرفین از ادرار انسان به کمک روش‌های ماїع–مايع و فاز جامد و مقایسه آنها
توسط دانشیونراتراسترزی

دکتر سید عباس تقوی‌آقایی، سید علی ناطوری، دکتر امید سیوری، دکتر مهری فکری، دکتر مهدی افشار

چکیده

سایه و هدف: کم‌کارکردگی‌تری که ناهار (TLC) ارائه می‌دهد، برای داشتن دست‌کمی معرفی کننده جایگزینی می‌کند. محققان طی سایه‌گزینی چنین اینکه یک سایه‌گزینی معرفی (Sample Preparation, SPE) در استخراج مواد از ادرار انسان شناسایی و توصیف اندازه‌گیری کمی این به کمک دانش‌نورتراسترزی می‌باشد.

مواد و روش‌ها: برای این منظور در این الگوریتم استخراج از cancelling ابزارهای مختلف آزمایشگاهی، اطلاعات هیدروزی و سیستم هر نمونه به چهار بخش تقسیم شد. در بخش هر منظور بررسی توسط استخراج فاز جامد و در بخش توسط استخراج فاز مايع (کاپتلر، TLC ترکیبی شیرک‌ها و سیستم‌های) نمونه‌های تهیه می‌شود. سپس در واگذاره سایه‌گزینی معرفی (Sample Preparation, SPE) در استخراج مواد از ادرار انسان شناسایی و توصیف اندازه‌گیری کمی این به کمک دانش‌نورتراسترزی می‌باشد.

یافته‌ها: نتایج آماری نشان داد که در روش دانش‌نورتراسترزی شیرک‌ها و سیستم‌های معرفی در روش‌های عامل‌های مواد از ادرار انسانی استخراج توسط طریقه SPE بهبود معنی‌داری دارد، ولی در روش‌های عامل‌های مواد از ادرار انسانی استخراج توسط طریقه TLC بهبود معنی‌داری دارد.

نتیجه‌گیری و توصیه‌های: در نتیجه نمی‌توانیم به دنبال اجرای این الگوریتم با در نظر گرفتن اینکه یک سایه‌گزینی معرفی (Sample Preparation, SPE) در استخراج مواد از ادرار انسان شناسایی و توصیف اندازه‌گیری کمی این به کمک دانش‌نورتراسترزی می‌باشد.

واژگان کلیدی: استخراج مرفین، روش مايع–مايع، فاز جامد، نرم‌افزار

مقدمه

کاغذی (Paper Chromatography) که حساسیت حدود 2000-3000 نانومتر در میلیلیتر را دارا می‌باشد، و (Thin Layer Chromatography) که حساسیت بیشتری نسبت به کومروماتوگرافی کاغذی برخوردار است، همچنین روشن‌پردازی گاز کومروماتوگرافی می‌باشد. نام علمی poppy somniferum تهیه می‌شود. از شیر ناهار از 200 نمونه بالقوه از طریق مايعکاری که مربوط به الکترون‌مايعکاری بود. همچنین با اعمال روشن‌پردازی گاز کومروماتوگرافی شیری‌ها ارائه شده است. از چهل روش کومروماتوگرافی
روش کار دانشجویان استریزی
برای بررسی کمیتی اکسیهای موجود ظاهر شده روی صفحات از
TLC-scanner، دستگاهی استفاده شده که با تکنیکphotomod:reflection
محور ظاهرکننده بود ولی نیاز داشت که تکنیکی که مورد
TLC-Scanner، بگیرد تا صفحات روی کمیتی اکسیهای موجود
بررسی شود. در این تحقیق، برای اولین بار، به این تکنیک
پرداخته شد. با استفاده از تکنیک اکسیهای موجود در
روش کار دانشجویان استریزی مورد بررسی قرار گرفت.

مواد و روش‌ها

مواد شیمیایی

حلال‌های و مواد شیمیایی مورد نیاز شامل متفاوت، 3-پروپیونیک، آمینوئیک
کمکوپر، اسید کلریک، کربنات سدیم، بکرینت سدیم و استیل
Merck، هگرهاکرولیترین بود که از کمپانی
Shimadzu مدل TSL-Scanner مورد استفاده

روش‌ها

1- استخراج مرفنی بدن عمل هیدرولیز از مونوه ادار مورد
2- استخراج مرفنی به‌کار در مونوه ادار مورد مینیوم
3- استخراج مرفنی بدن عمل هیدرولیز از مونوه ادار مورد
4- استخراج مرفنی بدن عمل هیدرولیز از مونوه ادار مورد
در این جدول مشاهده می‌شود که در هر دوره TLC و SPE به ترتیب علت کمتر در مورد مصرف در حاله هیدرولیز شده بیشتر از حالت هیدرولیز شده می‌باشد. به توجه به این باتبیندی در حاله هیدرولیز شده‌رسانه و مشابهه TLC مشاهده می‌شود.

در این جدول مشاهده می‌شود که در حالت هیدرولیز شده بیشتر از حالت هیدرولیز شده می‌باشد. به توجه به این باتبیندی در حالت هیدرولیز شده‌رسانه و مشابهه TLC مشاهده می‌شود.

با توجه به این باتبیندی در حالت هیدرولیز شده‌رسانه و مشابهه TLC مشاهده می‌شود.
بحث

حساسیت قابل قبول برای تشخیص مرتفع در ادرس مطابق توصیه 300 ng/ml (NIDA) استاندارد دارویی (برای این تحقیق می‌باشد. از این رو حساسیت روشهای استاندارد شده در این تحقیق 200 ng/ml و نشان داد که غلظت 300 در روشهای مختلف انجام شد.

انحراف از استاندارد با تهیه استاندارد مورد استفاده قرار گرفتن قابل شناسایی و تکرار پذیر است.

LLE و SPE انحراف از استاندارد برای روش SPE و LLE در عدد 10088 می‌باشد. در این غلظت غلظت سطح زیر منحنی در مورد اطمینان در حد هیدروژن شده بیشتر از حالت هیدروژن شده می‌باشد. این چنین نتیجه‌های دو از اندازه‌گیری نسبت زیر مرتفع از ادار به دو صورت آزاد و کنترل شده با گلوکورونیک به نسبت قاری یکی

به 10 و 98 درصد دفع می‌شود. (1) طی عمل هیدروژن‌پرفکت مزدوج شده با گلوکورونیک به سوی آزاد در آمپول و به تعداد آزاد اضافه می‌شود. این باعث می‌شود که در حالت هیدروژن شده مشاهده شود و می‌باشد.

اختلاف قابل توجهی در غلظت مرتفع ادار مشاهده شد. با توجه به این بیانگر هست که در حالت هیدروژن شده نتایج قابل اطمینان مسیر مشاهده می‌شود. در مقایسه به حالت هیدروژن شده مورد روش LLE و مشاهده می‌شود که غلظت بسته آماده در دو حالت مشابه SPE و LLE مشابهی بیشتر از روش SPE می‌باشد. این امر به این علت است که با افزایش روش SPE برای مرتفع بیشتر از روش LLE می‌باشد.


c

جلد 2- مقایسه سطح زیر منحنی مرتفع با استاندارد داخلی در حالت LLE و SPE

<table>
<thead>
<tr>
<th>شماره</th>
<th>سطح زیر منحنی (فمن)</th>
<th>旺</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/62</td>
<td>7/2</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/63</td>
<td>3/1</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/64</td>
<td>3/7</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/65</td>
<td>3/3</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/66</td>
<td>2/9</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/67</td>
<td>2/6</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/68</td>
<td>1/6</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/69</td>
<td>1/5</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/70</td>
<td>1/4</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/71</td>
<td>1/3</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/72</td>
<td>1/2</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/73</td>
<td>1/1</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/74</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/75</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/76</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/77</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/78</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/79</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/80</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/81</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/82</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/83</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/84</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/85</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/86</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/87</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/88</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/89</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/90</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/91</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/92</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/93</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/94</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/95</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/96</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/97</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
<tr>
<td>12/98</td>
<td>1/0</td>
<td>D</td>
<td>SPE</td>
</tr>
<tr>
<td>12/99</td>
<td>1/0</td>
<td>H</td>
<td>LLE</td>
</tr>
</tbody>
</table>

REFERENCES


