ضرورت اندمازه‌گیری ضرایب پراکندگی دستگاه‌های پرتو درمانی

پروانه ۱) شماره منادی

بتک پرتو درمانی، بیمارستان سیدالشهداء اصفهان

خلاصه

مقدمه‌نامه‌ی هدف در پرتو درمانی، درمان قطعی تومور و حفظ بافت‌های سالم مجاور است. به این دلیل لازم است اختلاف بین دوز تجویز شده و دوز منتقلاً شده به‌طور کلی از دو دهم باشد. به‌منظور محاسبه‌ی دوز تومور در خروجی دستگاه پرتو درمانی برای یک میدان مرجع (10*10 cm²) اندازه‌گیری می‌شود. هدف از انجام این تحقیق بررسی ضرورت استفاده از ضرایب پراکندگی برای تنظیم خروجی میدان مرجع به خروجی سایر میدان‌های مورد استفاده در پرتو درمانی بود.

ضرایب پراکندگی کل، Scp و فانتوم به روش اندازه‌گیری و محاسبه‌ی پرتو دستگاه‌های پرتو درمانی بیمارستان سیدالشهداء (ع) اصفهان تعیین شد. Scp در فانتوم استوانه‌ای باریک ساخته شده و در آن تحقیق به‌صورت مشابه Scp در فانتوم آب اندازه‌گیری شد. این تحقیق از مقادیر Scp و Scp در فانتوم آب، مقادیر کلی که مشابه سپت در فانتوم با اندازه‌گیری میدان فانتوم متقاوت است، با مقایسه‌ی آماری انجام گردید.

نتایج حاصل از انجام این تحقیق نشان می‌دهد در صورت عدم استفاده از ضرایب پراکندگی پرتو ۱۲ شیفت دیده شد، خصوصاً در صورتی که درصد دربرگیرنده‌ی دو دهم از دوز تومور بود. برای محاسبه‌ی دوز میدان‌های می‌توان به Scp و Sp در فانتوم کلی استفاده کرد. در صورتی که دوز تومور به دو برابر شده باشد، از مقادیر Scp و Scp در فانتوم انتخاب باید در صورتی که دوز تومور به دو برابر شده باشد.

واژگان کلیدی: ضرایب پراکندگی، پرتو درمانی، بانه‌سازی سرطان

مقدمه

در دوزی جذب شده و دوز منتقلاً شده به‌طور کلی میزان دوز جذب شده در یک نقطه از میدان تا به دو دهم تغییر می‌کند. دوز پرتو درمانی اولیه توسط پرتو درمانی که مستقیماً از جهره منشاً پرتو درمانی پیکی از روش‌های رایج برای درمان تومورهاي بدخیم و برخی از تومورهاي خوش خیم است. مهم‌ترین هدف در پرتو درمانی نابودی سیاله‌‌های توموری و محافظت از بافت‌های سالم می‌باشد. به‌هیچ دلیل بهینه‌سازی روش محاسبه‌ی دوز جذب شده در پرتو درمانی بصورتی‌که اختلاف
ضرورت اندازه‌گیری ضرایب پراکندگی

گرفتن‌دان، بوجود می‌آید. قسمتی از پروتوهای اولیه در سیستم کولوماتور دستگاه پرتو درمانی و در فاناتوم (بدن بیمار) پراکندگی شده و در پروتوهای پراکندگی مشابه از دوز کولوماتور در دوز فاناتوم را بوجود می‌آورد. این با توجه به فاکتورهای مختلف کولوماتور، میزان پراکندگی فاناتوم‌ها از سطح کولوماتور افزایش یافته و بر علت اضافه شدن پراکندگی کولوماتور افزایش یافته به پرتو اولیه، بازده دستگاه افزایش می‌یابد. ذروی بوسیله‌های پرتو فاناتوم بطور مستقل از هم، بوسیله بلوک کردن میدان، قابل نیز تغییر می‌باشد.

بلوک کردن میدان و با پوشش‌نده‌های پرتو می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. این نشان می‌دهد که در این نیاز به استفاده از بلوک‌های سری می‌باشند. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. بلوک می‌تواند باعث ایجاد نارسایی در اندازه‌گیری شود که با تغییر بلوک‌های سری می‌باشد. B
در این تحقیق ضایعات پراکنده‌ی Sp ساخته شده از Sp و Sc به دو روش اندام‌گیری و محاسبه‌ی برای دستگاه‌های پرتور درمانی بیمارستان سیدالشهداء (ع) استفاده تئیم‌گر دری و ضرورت استفاده از ضایعات پراکنده‌ی برای محاسبات دور تومور بررسی شد.

مواد و روش‌ها

روش سواد استفاده در این تحقیق براساس اندام‌گیری Sc و محاسبه‌ی ساخته شده از Sp در یک میدان Sce برای ساخته‌ی از یک فانوس با استفاده از اندام‌گیری شد. فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm مخصوص این تحقیق ساخته شد و به صورت محور با پرتور در فاصله قرار داده شد (شکل 1).

![شکل 1: ساخته‌ی از از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm](image)

نحوه ساخته‌ی از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm

اولین بار در ساخته‌ی از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm

مقدار بیش از 4000 دیجیتال مایکر می‌تواند در 10 cm مقدار باشد در فانوس آب با M اکس کلر نشان دهنده ضایعات پراکنده‌ی برای 10 cm می‌باشد.

![شکل 2: ساخته‌ی از از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm](image)

نحوه ساخته‌ی از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm

اولین بار در ساخته‌ی از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm

مقدار بیش از 4000 دیجیتال مایکر می‌تواند در 10 cm مقدار باشد در فانوس آب با M اکس کلر نشان دهنده ضایعات پراکنده‌ی برای 10 cm می‌باشد.

![شکل 3: ساخته‌ی از از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm](image)

نحوه ساخته‌ی از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm

اولین بار در ساخته‌ی از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm

مقدار بیش از 4000 دیجیتال مایکر می‌تواند در 10 cm مقدار باشد در فانوس آب با M اکس کلر نشان دهنده ضایعات پراکنده‌ی برای 10 cm می‌باشد.

![شکل 4: ساخته‌ی از از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm](image)

نحوه ساخته‌ی از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm

اولین بار در ساخته‌ی از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm

مقدار بیش از 4000 دیجیتال مایکر می‌تواند در 10 cm مقدار باشد در فانوس آب با M اکس کلر نشان دهنده ضایعات پراکنده‌ی برای 10 cm می‌باشد.

![شکل 5: ساخته‌ی از از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm](image)

نحوه ساخته‌ی از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm

اولین بار در ساخته‌ی از Sp و Sc با استفاده از فانوس با استدامه‌ای از جنس پلی اتیلین فشرده و به قطر 8 cm

مقدار بیش از 4000 دیجیتال مایکر می‌تواند در 10 cm مقدار باشد در فانوس آب با M اکس کلر نشان دهنده ضایعات پراکنده‌ی برای 10 cm می‌باشد.
نتایج و بحث

تأثیر عمق در اندازه‌گیری Sc برای برتو

تأثیر عمق (d$_{\text{beam}}$) در اندازه‌گیری Sc به در روش و فناتوم با برکت استفاده از استفاده از Co و Sc استفاده مطالعه شد. نتایج برای عمق 70، 150 و 300 میلی‌متر بررسی تغییرات میدان در نتایج میدان ساده شد.

در نتیجه برای اندازه‌گیری Sc برتو، Co، Sc و Co استفاده نمود.

![Diagram](https://via.placeholder.com/150)

شکل 17: تأثیر عمق در اندازه‌گیری Sc برای برتو

برای برتوهای ذکر شده در جدول 1 سپت می‌توان آن برکت گیک کاملاً در فناتوم استفاده کنید (شکل 4). به این ترتیب محاسبه هزینه در عمق d با استفاده از ضرایب

بصورت زیر انجام می‌شود:

$$D (r, d) = D (r_0 = 10 \times 10, r_p = 10 \times 10 \times d_{\text{beam}}) \times$$

$$\text{Ssc} \times (r, r_0, d_{\text{beam}}) \times \text{PDD} (r, d)$$

که در آن

$D (r, d)$ درصد دوز کمی و $\text{PDD} (r, d)$ درصد دوز کمی با استفاده d_{beam}:

$$\text{Ssc} (r, r_0, d_{\text{beam}}) = \text{Ssc} (r_0) \times \text{Ssc} (r, d_{\text{beam}}) / \text{PDD} (r, d_{\text{beam}})$$

با توجه به تغییرات زیادی

بررسی میدان. منظور نمود که باید در محاسبات در دوز اینفیو طی طیاره‌های زیادی را در دمای بیش از 4 درصد برای 17 و 16 تا 15 درصد برای 12 و 16 درصد برای 21 و 16 درصد برای 13 تا 15 دنیک کیتال

نتایج بحرکت اندازه میدان، روند پیکسانی را نشان نمود.

بررسی میدان در محاسبات در دوز اینفو طی طیاره‌های زیادی را در دمای بیش از 4 درصد برای 17 و 16 تا 15 درصد برای 12 و 16 درصد برای 21 و 16 درصد برای 13 و 15 دنیک کیتال

نتایج بحرکت اندازه میدان، روند پیکسانی را نشان نمود.

بررسی میدان در محاسبات در دوز اینفو طی طیاره‌های زیادی را در دمای بیش از 4 درصد برای 17 و 16 تا 15 درصد برای 12 و 16 درصد برای 21 و 16 درصد برای 13 و 15 دنیک کیتال

نتایج بحرکت اندازه میدان، روند پیکسانی را نشان نمود.
(**) PMV قرن و (b,α) ⁶⁰Co گام‌هایی Sp و Sc Sp ـ ۳۵ شکل ۸
شکل 5 - مقایسه ضرایب پراکندگی برای پتومایه 50 و پتراوی 18MV
<table>
<thead>
<tr>
<th>SCP_cave</th>
<th>SCP_cal</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_0=r_p</td>
<td>(درصد خطأ)</td>
</tr>
<tr>
<td>SCP_cal</td>
<td>SCP_cal</td>
</tr>
<tr>
<td>(درصد خطأ)</td>
<td>SCP_mean</td>
</tr>
<tr>
<td>(r_0=15+15)</td>
<td></td>
</tr>
<tr>
<td>r_p(cm^3)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCP_250a</th>
<th>SCP_300a</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_0=r_p</td>
<td>(درصد خطأ)</td>
</tr>
<tr>
<td>SCP_250a</td>
<td>SCP_300a</td>
</tr>
<tr>
<td>(درصد خطأ)</td>
<td>SCP_mean</td>
</tr>
<tr>
<td>(r_0=15+15)</td>
<td></td>
</tr>
<tr>
<td>r_p(cm^3)</td>
<td></td>
</tr>
</tbody>
</table>

جدول آماری مقادیر SCP اندازه‌گیری شده و مماسه شده در میدان‌های بلک شده برای پروژه 6-0

<table>
<thead>
<tr>
<th>SCP_cal</th>
<th>SCP_250a</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_0=r_p</td>
<td>(درصد خطأ)</td>
</tr>
<tr>
<td>SCP_cal</td>
<td>SCP_250a</td>
</tr>
<tr>
<td>(درصد خطأ)</td>
<td>SCP_250a</td>
</tr>
<tr>
<td>(r_0=15+15)</td>
<td></td>
</tr>
<tr>
<td>r_p(cm^3)</td>
<td></td>
</tr>
</tbody>
</table>

نتیجه‌گیری

از فاکتورهایی که ضروری است در محاسبه دوز تومور در پرتوم درمانی مورد استفاده قرار گیرد، ضریب پراکندگی کل SCP می‌باشد. بعلت اینکه ساختار کولومیونی دستگاه‌های پرتوم درمانی با هم متفاوت است، مقدار پراکندگی برای انرژی‌های مشابه، یکسان نمی‌باشد. بنابراین ضروری است در هر پروژه پرتوم درمانی، ضریب پراکندگی برای پرتوهای هر دستگاه به‌طور جداگانه اندازه‌گیری شود.

در مواردی که اندازه میدان کولومیونی با اندازه‌های SSD فاکتور متفاوت است (یعنی در های غیر استاندارد)، در میدان‌های بلک شده و در مواردی که مقدار پراکندگی در میدان یکتواخت نیست، از
ضرورت اندازه‌گیری ضرایب پراکندگی

محاسبه شده با مقادیر اندام‌هایی که شده شده در سطح بوده‌اند. در صورتی که پروتون انتخاب شده، فاکتور پروتون انتخاب استفاده می‌شود. دوز تومور از محاسبه در سطح ۲/۷ درصد (برای بلوند ۷۲ درصد) و تا ۱/۸ درصد (برای بلوند ۷۲ درصد) تا

References: