ضرورت اندازه‌گیری ضرایب پراکندگی دستگاه‌های پترودمانی

بروانه شکرایی* شهرام نامدی*

*پویش پترودمانی، بیمارستان سیدالشهدا اصفهان

خلاصه

سهم‌های هدف در پترودمانی، درمان قطعی تومور و حفظ بافت‌های سالم مجاور است. به این دلیل لازم است اختلاف بین دوز تجویز شده و دوز منتقل شده به تومور کمتر از 2 درصد باشد. بنظر محاسبه دوز تومور خروجی دستیکه پترودمانی برای یک میدان مرجع (100×100 cm²) اندازه‌گیری می‌شود. هدف از انجام این تحقیق بررسی ضرورت استفاده از ضرایب پراکندگی برای تبدیل خروجی میدان مرجع به خروجی سایر میدان‌های مورد استفاده در پترودمانی بود.

ضرایب پراکندگی کل کولیوماتور، Sp و فانتووم به روش اندازه‌گیری و محاسبه برای دستگاه‌های پترودومانی 14 کاسه می‌باشد. سهم‌های برون‌نشسته به تومور در پتودمانی به توجه به تعداد کلن و بلوک برون‌نشسته محاسبه می‌گردد. در صورتی که سهم‌های برون‌نشسته به تومور بالا 15 درصد بروز بندی داشته باشد به توجه به سهم برون‌نشسته از تومور پترا اندازه‌گیری می‌گردد.

نتایج: نشان دهنده حاصل از انجام این تحقیق نشان می‌دهد در صورت عدم استفاده از ضرایب پراکندگی پترودومانی 14 کاسه کاهش دهنده خطر سانسور و دوز منتقل شده به تومور از 15 + 18 درصد (در پراکندگی میدان) تا 6 درصد (در پراکندگی میدان) خروجی Co می‌باشد. سهم برون‌نشسته به تومور در پتودمانی به توجه به سهم برون‌نشسته از تومور پترا اندازه‌گیری می‌گردد. سهم برون‌نشسته از تومور پترا در پتودمانی به توجه به سهم‌های برون‌نشسته به تومور بالا 15 درصد (در پترا) نشان دهنده حاصل از انجام این تحقیق نشان می‌دهد در صورت عدم استفاده از ضرایب پراکندگی پتودمانی 14 کاسه کاهش دهنده خطر سانسور و دوز منتقل شده به تومور از 15 + 18 درصد (در پترا) تا 6 درصد (در پتودمانی) خروجی Co می‌باشد. سهم برون‌نشسته به تومور در پتودمانی به توجه به سهم برون‌نشسته از تومور پترا اندازه‌گیری می‌گردد.
ضرورت اندام‌های گیری ضررای شیبکلاک

گرفتن‌دسته، بوجود می‌آید. قسمتی از پرونده‌ای اولیه در
سیستم کولی‌نمونه‌سازگاری، پرنی‌درمانی و در فاکتور
(بدن بیمار) پرانت‌دسته، شده و در پرونده‌ای پرانت‌دسته،
مشکل از دور سیستم کولی‌نمونه و دور فاکتور را بوجود
مسی‌آورد. (1) با سال‌هاش اماعت کولی‌نمونه، میزان
پرانت‌دسته فوت‌ها از سطح کولی‌نمونه افزایش یافته
و به علت اضافه شدن پرانت‌دسته کولی‌نمونه افزایش
یافته با پرونده، بازده دستگاه افزایش می‌یابد. در
وزن سیستم کولی‌نمونه و دور فاکتور بطور مستقل از هم,
پوزشی بلوک کردن میدان، بالین نیز می‌باشد. (2)
با بلوک کردن میدان و با پوشاندن قسمتی از میدان
پرتو پوستی بلوک‌های سری می‌باشد با استفاده
نگذب‌زایی در قسمت باز پرتو (دور کولی‌نمونه کار
بازه(1) ایجاد تکنیک و در عرض پرانت‌دسته خانم
(دور فاکتور) را بطور موثر کاهش دهد. (3) میزان
نگذب‌زایی پرانت‌دسته کولی‌نمونه در اثر تغییر میدان توسط
ضریب پرانت‌دسته کولی‌نمونه، Sc و (با ضریب بازه) و
میزان پرانت‌دسته فوت‌ها در اثر تغییر میدان در فاکتور با
Sp استفاده از ضریب تصحیح پرانت‌دسته کولی‌نمونه
تعمیم می‌شود. (1)

نظر به اینکه در عمل، اندازه‌گیری دوز پروندهای
اویلیه در فاکتور، بطور مستقل از پرانت‌دسته‌ها
کولی‌نمونه و فاکتور می‌باشد. (4) سیستم و پرانت‌دسته و
کولی‌نمونه را جزئی از دور پروندهای اویلیه دانسته
دو دور پرانت‌دسته و فاکتور را بطور جدایی هم‌پوشانی
نمونه‌برداری پرانت‌دسته یک، به دو، Sp و (ضریب پرانت‌
دسته کولی‌نمونه، Sc و فاکتور، Sp) پرتو
قسمت کولی‌نمونه، (5) توصیه‌شده‌باین
توسط همکاران باقی
تربیت فاکتورهای نسبی Sp Sc که به مقایسه
بیو‌پوش به یک میدان منجر، معمولاً میدان
برای وزن گیری در عمک 10، و در یک عمک منجر، d
و در فاصله
نرمال‌سازی داشت را به ابتکار رتبه‌زی زیبایی بست معیان:
Sp (te tr, dm) = Sc (te tr, dm) xSp (te tr, dm)
برای تأیید معادله (1) و بررسی صحت اندادگی‌های آزمایش زیر انجام شد. یک میدان $5 \times 15 \times 15 \text{cm}^3$ و (r$_1$, r$_2$, r$_3$) انتخاب گردید. به این ترتیب، میدان 50 و میدان‌های معادل 128/5/5/5/8/8/5 و SSD=SAD و بر روی فانوس آب در فاصله ساخته شد (شکل 2). مقادیر میدان‌های فوق 5cm در میان اندازه‌گیری شده و مقادیر محاسبه شده (r$_1$) x Sp (r$_2$) مقایسه گردید.

![Diagram](image)

شکل 2: مقادیر میدان‌های فوق 5cm در میان اندازه‌گیری شده و مقادیر محاسبه شده (r$_1$) x Sp (r$_2$) مقایسه گردید.

اندازه‌گیری‌های Sc و S_{Cp} با استفاده از فانوس Sc و S_{Cp} با استفاده از Sp. مقادیر برابر کافی است از یک الکترونیک مدید برای میدان‌های 5cm^3 با پرچم گسترده NE2570 میدان در دستگاه تعیین گردید. مقادیر خوانده شده برای هر میدان به مقدار خوانده شده برای میدان $10 \times 10 \text{cm}^2$ ارتفاع همان مقداری کاملاً 5cm^3 و در میان اندازه‌گیری شده. جهت نرمال کردن مقادیر خوانده.
نتایج و بحث

تأثیر عمق در اندازه‌گیری برای پرتو CO

تأثیر عمق (depth) در اندازه‌گیری Sc برای پرتو به در روش و فانیون پاریک استفاده از build-up cap استفاده می‌شود. تناژ بیار در عمق 70/0 و 5 سنتمتر بر حسب تغییرات میدان در SAD توان فتویی را نشان می‌دهد. (شکل 3).

در نتیجه برای اندازه‌گیری Sc برای پرتو CO، پرتو فوتویی در استفاده نمود.

![شکل 3: تأثیر عمق در اندازه‌گیری Sc برای پرتو CO](image)

شکل 3: تأثیر عمق در اندازه‌گیری Sc برای پرتو CO

برای پرتو فوتویی

برای پرتو فوتویی

برای پرتو فوتویی در بکار گرفتن از نظیره D (r_0, r_p, d) = D (r_0 = 10×10, r_p = 10×10 d_{max}) × ScP× (r_0, r_p, d_{max}) × PDD (r_p,d)

که در آن Sc بر حسب d_{max} درصد دوز عرمی و PDD (r_p,d) در حساب است.

ScP (r_0, r_p, d_{max}) = Sc (r_0) ×Sp (r_p, d_{max}) / PDD (r_p,d)

ScP (r_0, r_p, d_{max}) = Sc (r_0) ×Sp (r_p, d_{max}) / PDD (r_p,d)

Sp (r_0, r_p, d_{max}) = Sc (r_0) ×Sp (r_p, d_{max}) / PDD (r_p,d)

Sp (r_0, r_p, d_{max}) = Sc (r_0) ×Sp (r_p, d_{max}) / PDD (r_p,d)

Sp (r_0, r_p, d_{max}) = Sc (r_0) ×Sp (r_p, d_{max}) / PDD (r_p,d)

Sp (r_0, r_p, d_{max}) = Sc (r_0) ×Sp (r_p, d_{max}) / PDD (r_p,d)

در هنگام بررسی اندازه‌گیری Sc برای پرتو فوتویی در محیط‌های میدانی، روند پسکاکی را نشان می‌دهد.
شکل ۳ - (c) PMV غیربیولوژیکی و ۶۰Co غیربیولوژیکی. Sp، Sc، Scp.
شکل ۵- مقایسه ضرایب پراکندگی برای پروژه‌های ۶۰ و ۷۰ درجه PMMV
نتیجه‌گیری

از فاکتورهایی که ضروری است در محاسبه‌ی دوره‌ی تومور در پرتو دمایی مورد استفاده قرار گیرد، ضریب پراکندگی کلی می‌باشد. بعلت اینکه با استخوان کولومبیون دستگاه‌های پرتو درمانی با هم متفاوت است، مقدار پراکندگی باید انتزاعی‌های مشابه، یکسان نمی‌باشد. بنابراین ضروری است در هر بخش پرتو درمانی، ضریب پراکندگی برای پرتوهای دستگاه بطور جدایی‌اندوز، به گیرنده‌های مختلف در مواردی که انتخابه میدان کولومبیون با اندازه‌ی میدان فاکتورهای است (یعنی در SSD های غیر استاندارد، در میدان‌های پرتو بزرگ و در مواردی که مقدار داشته در میدان‌های کوچک نیست) بایستی از

جدول ۳- مقایسه مقدارهای Sc پراکندگی کلی شده و محاسبه‌ی شده برای میدان‌های پرتو بزرگ پرتوی ۹۰۰۰

<table>
<thead>
<tr>
<th>(r_{c}=r_{p}) (درصد خطای)</th>
<th>(Sc_{c}=Sc_{p}) (درصد خطای)</th>
<th>(Sc_{max})</th>
<th>((r_{c}=15%\text{ و }r_{p}))</th>
<th>(r_{c}(\text{cm}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.40\text{ و }0.20)</td>
<td>1/1008 (1/2)</td>
<td>1/1020</td>
<td>1/1050</td>
<td>5/05</td>
</tr>
<tr>
<td>(0.40\text{ و }0.20)</td>
<td>1/1021 (1/2)</td>
<td>1/1033</td>
<td>1/1050</td>
<td>5/05</td>
</tr>
<tr>
<td>(0.40\text{ و }0.20)</td>
<td>1/1038 (1/2)</td>
<td>1/1027</td>
<td>1/1050</td>
<td>5/05</td>
</tr>
<tr>
<td>(0.40\text{ و }0.20)</td>
<td>1/1020 (1/2)</td>
<td>1/1038</td>
<td>1/1050</td>
<td>5/05</td>
</tr>
<tr>
<td>(0.40\text{ و }0.20)</td>
<td>1/1027 (1/2)</td>
<td>1/1029</td>
<td>1/1050</td>
<td>5/05</td>
</tr>
</tbody>
</table>
ضرورت اندوزه‌گیری ضرایب برای نکده... محبوب شده با مقادیر اندوزه‌گیری شده 1/3 درصد بود. در صورتیکه بجای روش فوق فقط از میدان 2/4 درصد (برای بلندی 27 درصد) نا-8/17 درصد برای پرتو انتخاب

References: